RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIRST SEMESTER EXAMINATION, DECEMBER 2018

FIRST YEAR [BATCH 2018-21] MATHEMATICS FOR ECONOMICS [General]

Date : 24/12/2018 Time : 11 am – 2 pm

Paper : I

Full Marks: 75

[5×7]

[3]

[2]

[2]

[Use a separate Answer Book for each Group]

Group – A

Answer any five questions from <u>Question Nos. 1 to 8</u>:

- 1. a) Show that the set $S = \{x \in \mathbb{R} | x^2 24x + 119 \le 0 \text{ and } x \ne 7\}$ is neither open nor closed in \mathbb{R} . [4]
 - b) Consider the set $A_k = \{x | x = kn \text{ and } n \in \mathbb{N}\}$ where $\mathbb{N} = \{1, 2, \dots\}$ is the set of natural numbers. Write down the set A_2 and A_3 then show that $A_2 \cap A_3 = A_6$

2. a) Prove that
$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right) = 1$$
 [5]

b) Give example of an oscillatory sequence with infinite oscillation.

3. a) Show that the sequence
$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$$
 for $n \ge 2$ and $x_1 = 2$ converges to $\sqrt{2}$. [5]

- b) Using part (a), give a sequence which converges to $\sqrt{\alpha}$ for $\alpha > 0$.
- 4. a) State Archimedean Property of \mathbb{R} .
 - b) Prove that the series $\left(\frac{1}{2}\right)^{p} + \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^{p} + \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^{p} + \dots$ is convergent for p > 2 and divergent for p > 2. [2+5]

5. a) Prove that the series
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 is divergent. [5]

- b) Write down the Cauchy's principle of convergence for a series $\sum_{n=1}^{\infty} u_n$. [2]
- 6. Verify whether the following functions are onto, one-to-one or bijection.
 - a) $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = x^2$
 - b) $f: \mathbb{R}_+ \to \mathbb{R}$ such that $f(x) = x^2$
 - c) $f: \mathbb{R} \to \mathbb{R}_+ \cup \{0\}$ such that $f(x) = x^2$
 - d) $f: \mathbb{R}_+ \to \mathbb{R}_+$ such that $f(x) = x^2$

Here, \mathbb{R}_+ denotes the set of all positive real numbers.

[2+2+2+1]

- 7. a) Represent the set of ordered pairs $S = \{(x, y) | |y-1| x \le 1, -\infty < x, y < \infty\}$, in a graph. Is it a closed or an open set?
 - b) Draw the functions $f(x) = Min\{|x|, 1\}$ for $-\infty < x < \infty$. Comment on the continuity and the differentiability of f at x = +1 and x = -1. [3]

8. a) Check whether the sequence $s_n = \{(-1)^n\}_{n=1}^{\infty}$ is convergent or not. Consider a sequence

$$s_n \in \left(a - \frac{1}{n}, a + \frac{1}{n}\right)$$
 for $n \in \mathbb{N}$, $a \in \mathbb{R}$ where \mathbb{N} and \mathbb{R} are respectively the set of natural numbers and the set of real numbers. Show that $s_n \to a$ as $n \to \infty$. [2+2]

b) If $A = \{a_1, a_2, a_3\}$ and $B = \{b_1, b_2\}$, then how many different functions $F: A \rightarrow B$ are possible?

<u>Group – B</u>

Answer any five questions from Question Nos. 9 to 16 :

- 9. a) Solve the equation $x^3 + 8 = 0$. [2]
 - b) If α, β are the roots of the equation $t^2 + 2t + 4 = 0$ and *m* is a positive integer, then prove that $\alpha^m + \beta^m = 2^{m+1} Cos \frac{2m\pi}{3}$. [4]
- 10. a) Let (G, \circ) be a group. A relation ρ on G is defined by " a ρ b if and only if

 $b = g \circ a \circ g^{-1}$ for some g in G; $a, b \in G$ ". Prove that ρ is an equivalence relation.

- b) Prove that the set of complex numbers of unit modulus forms a commutative group with respect to multiplication. [3+3]
- 11. a) Prove that in a group (G, \circ) , $(a \circ b)^{-1} = b^{-1} \circ a^{-1}$ for all $a, b \in G$.
 - b) Let, addition \oplus and multiplication \odot be defined on the ring $(\mathbb{Z}, +, .)$ by $a \oplus b = a + b - 1$, $a \odot b = a + b - a.b$, $\forall a, b \in \mathbb{Z}$. Prove that $(\mathbb{Z}, \oplus, \odot)$ is a ring with unity. [2+4]
- 12. a) Prove that, in a field F $a^2 = b^2$ implies either a = b or a = -b, $\forall a, b \in F$.
 - b) Solve by Cramer's rule:

$$\begin{aligned} x+y+z&=1\\ ax+by+cz&=k\\ a^2x+b^2y+c^2z&=k^2 \ , \ \text{where} \ a\neq b\neq c \quad \text{ and } \ k\in\mathbb{R} \end{aligned} \tag{2+4}$$

[5×6]

[3]

[4]

13. Examine whether the ring of matrices form a field under matrix addition and matrix multiplication

a)
$$\begin{cases} \begin{pmatrix} a & b \\ 3b & a \end{pmatrix} : a, b \in \mathbb{Q} \end{cases}$$

b)
$$\begin{cases} \begin{pmatrix} a & b \\ 3b & a \end{pmatrix} : a, b \in \mathbb{R} \end{cases}$$
[3+3]

14. Consider the matrix on friendship involving five individuals A_1 , A_2 , A_3 , A_4 and A_5 .

a) Calculate F². [2]

[2]

[2]

- b) What does each diagonal term of F^2 mean?
- c) What does each off-diagonal term of F^2 mean?

15. a) Let $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$. Show that $A^2 - 4A - 5I_3 = 0_3$, where I_3 and 0_3 are the identity and the null

matrices of order 3 respectively. Hence, obtain A^{-1} .

- b) Let A and B be two non-singular matrices of order $n \times n$. Is A+B non-singular? [4+2]
- 16. a) Determine the values of α , β and γ when $\begin{bmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma \end{bmatrix}$ is orthogonal. [4]
 - b) Let A be a non-singular matrix of order 4 .Determine the rank of the matrix Adj A . [2]

- 17. (a) Determine the function whose first difference is $3x^2 5x + 7$.
 - (b) Eliminate A and B from $y_n = A \cdot 3^n + B \cdot 4^n$ and determine the corresponding difference equation of lowest order.

18. Solve:
$$u_x - u_{x-1} + 2u_{x-2} = x + 2^x$$
 [5]

19. Reduce the matrix A to the fully reduced normal form and find non-singular matrices P and Q such

that PAQ is the fully reduced normal form , where $A = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

Also find the rank of A.

[3+2]

[5]